
UDC 539.3 

NECESSARY AND SUFFICIENT CONDITIONS FOR 

HOMOGENEOUS SIMPLE STRAIN 

PMM, Vol. 42, No. 4, 1978, pp 701-710 

G. L. BROVKO 
(Moscow) 

(Received August 13, 1976) 

The practice of computations shows that the use of the theory of small elastic- 
plastic strains yields completely satisfactory results for materials and loads of 

a broader class than is specified by conditions of the theorem on simple loading 
[l]. Necessary and sufficient conditions are obtained for homogeneous-simple 

strain for a broad class of compressible elastic-plastic solids with the depend- 
ence between the stress and strain intensities limited only by conditions on the 
ellipticity of the equilibrium boundary value problem. The form of the exter- 

nal loads under simple strain can hence differ substantially from their proport- 
ionate changes and, in general, depend on the mechanical characteristics of 
the material, These results afford a foundation for application of the theory 

of small elastic-plastic strains to a broader class of materials and loads. 

1. QuatithOCmal firldt. Lemma on linear tuporpot- 
I t i o n. bet us examine a continuous medium whose mechanical properties under 
isothermal conditions are governed by the relationship between the stress and strain 

deviators 

sii = @‘ii (3kll 
(1.9 

whose form is independent of the magnitude of the hydrostatic stress, and by the rela- 

tionship for the global tensors 

Cr = 3Ke (1.2) 

Here K is the volume elastic modulus, and the functional ~‘ij is such that all 
Sij _ ~ij - G6ij = 0 if and only if all 3ij = Eij - &ij = 0. 

A sufficiently broad class of solids possesses such mechanical properties. 
Let the medium mentioned fill a simply-connected domain CJ of the three-dimeh- 

sional space bounded by a surface S. Let us examine the mixed boundary value pr- 

oblem of quasistatics when a loading process by the volume forces Fi (x, t),,defined 
in the domain Q = a X [O, T], the surface forces T,i (x, t), ‘defined on the 

part)=,== S, X[O,T]of the side boundary Z = S X 10, Tl of the domain Q, and 
the displacements $i fx, t) on the part IZ, = :S, X IO, T1 of the boundary Z (S, 
+ As, = s, 2, + 2, = 2). g’ 1s lven for the body Q in the time segment t E [O, TJ. 

The problem is to find displacement Ui (x, t), strain eij (x, t), and stress (Jij (x, t) 
functions which will Satisfy the relationships (1.1) and (1.2) in the domain Q’ = Q 

+ 2 1 the equilibrium equations (here and below the summation is over repeated Latin 
and not the Greek subscripts) 

uij, j + Fi = 0 in Q (1.3) 
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the cauchy relations 

&ij = ‘i, (Ui, j + Uj, i) in Q’ 

and also the boundary conditions 

oijll = T,i on Z, 

ni = $i on Z, 

(1.4) 

(1.5) 

(1.6) 

where Zi = Zi (x) are the direction cosines of the external normal to 8. 
Let us assume the problem (1. l)-(1.6) to be solvable in a unique way. 
We find theclass of loading processes for which the strain and stress tensors are 

global at all points of the body at any time of the process. 

Lemma 1.1. In order for the solution of the boundary value problem (1.1) 

-(l. 6) to represent an arbitrary pure volume strain process for the body, it is necess- 
ary and sufficient that the external loads have the form 

Fi* z Fi* (t) in Q’ (1.7) 

Tvi* (x, t) = -l.F,* (t) zj + D (t)] Zi on 2lD 

$i* (X7 t) = (SK)-’ {l/z Fi* (t) (ZjXj) - Xi [Fi (t) Xi + 
D (t)I}+ ai on 2, 

Here Fi* (t), D (t) are arbitrary functions on [O, T], ai = ai (x, t) is an arb- 
itrary displacement vector for the body as a rigid whole. 

We prove the necessity of these conditions. Let Eij (x, t) = 8 (x, t) 6il. Then 

from the strain compatibility equations 

“aa, fifi + Ei3[3, aa = 2Ecc[i, czP, (1.8) 

eV.a, PY = (- %, a + %cc, p + %!i, V), a 

(% PY Y = 1, 2, 3; a # p z-y + a) 

there follows &,a~ =-: 0 (a, B = 1,2,3) ,i. e. , 

eij (~7 t) = [C, (t) ok + Co (t)] 6ij in Q' (1.9) 

where ck (t) and co (t) are arbitrary functions on IO, Tl. 
It follows from the properties of the functional (1.1) that the stress tensor is also 

global oij (Xv t) = (J ( X, iT)6,j, where according to (1.2) and (1.9) o (r, t) = 3K 

[C, @)5k + co (t)l i. e* ) 

Oij (X9 t) = 3K [ck (t)xk + Co (t)Tbij in Q’ (1.10) 

In this case the general solution of the Cauchy equations (1.4) is 

ui (x, t) = --IlzCi (t) (Xt.jzj) + Xi [Cj (t)zj + Co (t)J + bi in Q' (1.11) 

Here bj = bi ( X, t) is an arbitrary displacement vector of the body as a rigid 
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whole, 
In order for the functions (1.9)-f 1.11) to satisfy the equilibrium equations (1.3) and 

the boundary conditions (1.4), it is necessary that 

Fi = -3KCi (t) ill Q’ (1.12) 
TVS = 3K fCj (t)Sj + Co (t)& on X6 

+i = --lizCf (t) (ZjXj) + Zj [Cj (t)Xj + Co (tfj + hi Onzli 

from which we establish the necessity of the conditions (1.7) by setting Fi* (t) = 
-3KCi (t), D (t) = -3KC, (t) and ai (x1 t) = bi (x, t). 

To prove the sufficiency of the conditions, it should just be noted that the functions 

UZ* (~7 t) = (3K)-l {‘/sFi* (t) (ZjXj) - pi IFix (t)xj + D(t)]} + CI~ (1.13) 

Eij* (~7 t) = -(3121)-l I.Fk* (t)~k + D (t)J6ij 

Uij* (XT t) = -_[Fb* (t)~k + D (t)Jd,j 

in Q’ are the solution of the problem (1.1)-(1.6) under the loads (1.7) , which is uni- 
que by ~sumption. 

Therefore, the process of pure volume inhomogeneous strain, described for a body 

from materials with the properties (1.1) and (1.2), is characterized by four independent 
scalar functions Ci (t) (i = 0, 1,2, 3) and corresponds to an arbitrary change in time 

of the homogeneous field of volume forces F(t) for inhomogeneous loads on the sur- 

face defined according to (1.12). The integral equilibrium conditions expressed by the 

functions (1.12) for the body are satisfied identically and impose no limitations (const- 
raints) on the functions Ci (t). 

L e m m a 1.1 allows the following interpretation: if a homogeneous body with ihe 
mechanical properties (I.. 1) and (1.2) floats in equilibrium in a homogeneous gravity 

fluid in a homogeneous field of mass forces, then it experiences just volume strains and 
stresses. 

Let us call the field of external loads Fi*, Tyi*, $” defined by (1.7) quasith- 

ermal in application to the problems of the type (1. l)-( 1.6), and the solution (1.13), 
corresponding to this field, the quasithermal solution. 

Lemma 1.2 about linear superposition. ForgivenFi, Tyi, 
%i let the boundary value problem (1. l)-(1.6) have the solution ai, Eij, tsij. Then 

upon the imposition of an arbitrary quasithermal field of loads (1.7) the solution is ob- 

tained by a linear superposition of the corresponding quasithermal solution (1.13), i. e. , 
for the loads Fi + Fi” 7 Tvi + l’\-i*, $i $_ $i* the solution of the problem (l.l)- 

(1.6) is Ui + Ui*, Efj + eij*, Oij -k Oij*. 
The proof follows from Lemma 1.1 the linearity of the relationships (1.2)-(1.6), 

and the independence of the nonlinear relationships (1.1) from the volume strains and 

stresses. 
Tt is seen that the set of quasithermal process {Fi*, T,!i*, $i*, 

is a hear space, and the whole set of processes (F~, T,,~, gi, 
Iii*, ~ij*, Uij*} 

uit eijy cli,j) which are 
subject to the relationships (1. lk(1.6). is factorized by Lemma 1.2 in the subspace of 
quasithermal processes. Here the process should be understood to be the 
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vector function {Fi, Tyi, pi, ZJ~, &ii, Uij} defined in Q X 2, X z, X Q’ X Q’ 

x Qr and comprised of components of the external load field and the solution cor- 
responding to this field. 

Finally, let us note that the sum of any tensor satisfying the strain compatibility 
equations (1.8) and the arbitrary quasithermal strain tensor (1.9) also satisfied ( 1.8). 

2. Homogeneous-rimple rtraln. Klnemati 01 and 
reprerentation of the process. The process of body strain is called 
simple [I] (simple according to the deviator) if the field of the directional strain tensor 
remains invariant during the whole process, i. e., 

3ij (xv t) = A3ij” (x) in Q’ (2.1) 

Here 3ij” (x) is some deviator given in Q’ , and A = A (X, t) is a certain function 
of the coordinate and time. The relationship (2.1) can be written in the form 

P.. LJ = Pij (x)3 3, (x, t) = A3,O (x) (2* 2) 

Here pij is the time-invariant directional strain tensor 3, = (Va3ijaij)“’ is the 
strain intensity of the process, and aUO is the intensity of the deviator aij’. 

We call the body strain process homogeneously simple if A - A (t). only such 
simple strain processes are considered below. 

The value of the deviator of the process at any fixed time not identically zero, or 
any value proportional to this can be taken as the generating deviator Sip (5) of the 
simple strain process in (2.1). Every other method of selecting the generating deviator 
reduces to this. In particular, the proposition: For any linear operator L in a time 
independent of x, and any t, and t, from [O, 2’1 (A (tJ # O), there is a number 

C = C (L, t,,, tJ such that 

L [3ij (X7 t)Jt=*, = C3ij (X7 tl) (2.3) 

is valid for an arbitrary homogeneous strain process. 

Here and henceforth, the time should be understood to be any parameter distingu- 
ishing a sequence of events, i. e. any increasing scalar function of the physical time 

h P). 
Indeed, we obtain from (2.1) 

L 13ij (x7 t)Jt=to = L L-4 (t)3iF (X)Jt=to = L [A (t)J,,,, X 

3i j” (x) = L [A (t)J,=&l (t,)3i j (x, tJ = 

C3ij (XT td, C = L IA (t)Jt=J-l (tl) 

Therefore, if C # 0 in the relationship (2.3) then 

3ilp (X) = L [3ij (Xv t)It=t, (2.4) 

can be taken as the generating deviator of the process (2.1). 
It is easy to see that for each separate process (2.1) with a change in the selection 

of 3i j" ( X) the function A (t) varies proportionately to itself. 
Let us consider the kinematics of the homogeneous simple strain processes of com- 
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pressible media tUng an arbitrary simply-connected domain in three-dimensional 

space. Taking account of (2. l), we represent the strain tensor eij E aij + E6ij 
in the form 

&ii (x, t, = A (t)Eijo (X) + 8* (Z, t)d,j (2.5) 

Here Eiy (X) E 3iy (X) + E” (X)hij is a tensor whose deviator part agrees with the 
generating deviator ai)’ (x) of the process, i. e., 8ij’ is defined in conformity with 

(2.4) to the accuracy of an arbitrary global tensor by the relationship 

e*j’ (x) = L [Eij (Xv t)lf=to (2.6) 

The quantity e* (x, i) G e (x, t> - A (t>c” (x) describes the deviation of the 
mean strain of the process e from the proportionately varying Aa”. 

we shall henceforth assume that the strain tensor eij (x, t) satisfies the compati- 
bility equations (1.8) during the whole process. Then by virtue of the linearity of the 

operator L in (2.6) and the linearity of equations (1.8), the tensor ai j” (x) also sat- 
isfies (1.8). Taking this into account, we obtain a:‘$ = 0 in Q’ (a, b = 1, 2, 3) 
from (2.5) and (1.8), from which we conclude analogously to (1.9) that the tensor 

e* (x, t)sij defines a process of purely volume (quasithermal) strain of a body and 
together with the displacement vector corresponding to this process Ui* ( x, t) , is 
expressed by (1.9) and (1, U), respectively. If the combined tensor eij” (X) is 
selected in general form corresponding to (2.4), i. e. , in the form of the sum of (2.6) 

and the arbitrary combined global tensor of the form (1.9), we arrive at the same 

result. 
Therefore, the global strain tensor for homogeneous-simple strain varies proport- 

ionally to the deviator (the function A (t)) to the accuracy of the quasithermal strain 

tensor 

e (x7 t)hij = A (t)&’ (X)Sij + i3* (X, t)6ij 

The expression corresponding to (2.5) for the displacement vector of the homogen- 
eous simple strain process has the form 

Ui (Xv t) = A (t)Ui” (X) + Ui* (x, t, (2.7) 

Here the vector uio (x) is the solution of the Cauchy equation elj” = ‘/z (UijO + 

uj.i “) and is defined in case of (2.6) to the accuracy of an arbitrary displacement 
of the body as a rigid whole by the relationship 

ui” (x) = L IUi (x9 r)J,=,, (2.8) 

All arbitrary rigid body displacements occurring in the resolution of the cauchy 
equatiions are included in the expression for Ui* (x, t). The first members in the 
right sides of (2.5) and (2.7) evidently govern the tensor-simple strain process. 

L e m m a 2.1. Kinematically the homogeneous-simple (deviator simple) strain 
process of simply-connected compressible bodies is a linear superposition of two ind- 
ependent processes: 1) the tensor-simple strain process, and the pure volume (quasith- 
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ermal) strain process for a body. 
In conformity with this, the set of kinematic representations (2.5) and (2.7) of 

all deviator-simple strain processes is factorized in the linear subspace of kinematic 

representations (1.9) and (1.11) of arbitrary quasithermal strain processes. 
This result can be extended to the state of stress of a body, as well as to the load- 

ing process during deviator simple strain, in applications to problems of the type (1. l)- 
(1.6) on the basis of Lemma 1..2. 

C 0 r o 1 1 a c y 2.1. Every deviator-simple strain process can be represented in 
the form of the sum 

{pi, Tvi, +iy Uir aij, oij} = {Fit + Fi*, Tyit + ~~~*,+~t + 
4 i*1 Uit + Ui*, 8ij' + &ij*, Uijt + Oij*} 

Here the superscript t denotes functions describing the tensor-simple strain process, 
and the superscript * the quasithermal process. Therefore, the diviator-simple, and 
tensor-simple strain processes having identical strain deviators, drop into one equival- 

ence class during factorization of a set of processes of the type (1. l)-( 1.6) in the 
subspace of quasithermal processes. Hence, the question of the homogeneous simple 

strain conditions reduces to the determination of the tensor-simple strain conditions 

described by the relations 

Eij (XT t) = A (t)Eij' ( X), Ui (XT t) = A (t)Ui” (X) (2.9) 

obtained from (2.5) and (2.7) by discarding the quasithermal terms. 

b, Initially and tnfintt~8fmaily - elsttic materiala. 
Theorem of komogeneour rirnple strain. Letusturntoan 
investigation of the homogeneous simple strain conditions in solids. Limiting our- 

selves to the subclass of tensor-linear plasticity theories described by( 1.1) and (1.2), 
and taking account of the agreement between tensor-linear theories and theories of 

small elastic-plastic strains if the strain is simple [I], let us seek the formulation of 

these conditions in the terminology of the theory of small elastic-plastic strains. 
The quasistatics boundary value problem of the theory of small elastic-plastic 

strains under active strain is described analogously to problem (1. I)-( 1.6) by the re- 

lationships [l, 21 

(Tij,i + Fi zz 0 in Q (3.1) 

Sij = (2ou/33,)3ijr (T, = 3G3, [I - w (a,)], 

o = 3Kiz, &ij = '/z(ui,j + uj,i) in Q’ 

Oijlj = Tvi on 20 

ui -= +i on 2, 

Here the notation has the same meaning as in the problem (1. l)-(1.6); G is the 

initial shear modulus of the material, which is assumed positive, i. e., 
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3G = lim +>o 
au-+0 u 

(3.2) 

The function W (3,) characterizes the plastic shear properties of the material 
[l 1. For the majority of known materials, the function 0) (3~) satisfies the inequalities 

o~~w3,)~<(3,)+3,0'(3,)\(n<1 
(3.3) 

which assures the existence and uniqueness of the solution of the problem (3.1) [3,4]. 

Moreover, we obtain ]im w (3,) = 0 from (3.2), and by predetermining o (aJ at 
%‘-+s 

zero in continuity, we have 
0 (0) = 0 (3.4) 

If there is a finite section 0 < 3, < 3, of the linearly elastic dependence U, = 3G3, 
in the material, we have 

0 (3,) G 0 for 0 < 3, < 3, (3.5) 

We call such materials initially elastic. 
In the opposite case, taking account of (3.4) we obtain the asymptotic character- 

istic 

lims,w’ (3,) = 0 
3U-Nl (3.6) 

from the requirement of continuity of the first derivative at zero 

ds 

Ai% dJu 

ds 
2s lim 3G[l -01--_~0’] =-$ 

21 3,-o I 
s %=3G 

3,+0 

Taking account of (3.6), obtain 

lim 3u2~“(3u) 0 
3,-+0 

from asymptotic of second derivative of function 

in of 
0, (3,) 

lim d3 
+a,=lim 3G[- 

3,+0 a 3uA0 
2qd - 3,;0”] = 0 

etc. As is seen, the asymptotic of the behaviour of the function ou (3~) in the 
neighborhood of zero defines the asymptotic of the behaviour of the function o (a,,). 
In the general case, if 

dks 
lim k-l 2% =0 for k=2,3,...,n (3.3) 
a,40 dauk 
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then 

lim aUkP (3,) = 0 for 
3,-o 

k = 2,3,. . . ) r2 (3.91 

Materials for which the relationships (3.2). (3.4), (3.6)~(3.9) are satisfied will 
be called infinitesimally elastic of order n. 

It is easy to see that any initially elastic material is ~fi~t~irna~y elastic of order 

LX. in this case, we will assume compliance with conditions (3.2)-(3.4), (3.6), 
(3.7), and for brevity will call such material infinitesimally elastic. 

Let us pose the problem of seeking the process for the change in the form of the 

external loads for which the process of active homogeneous simple strain will occur 

in a body. 

Let us note that the ~ffer~tiation operation of any order with respect to time [3,4] 

can be taken as L in (2,4) for the generating deviator 3iji (S) of the process. 
Selecting L = d / dt, to = 0, we obtain from (2.4), (2.6), (2.8) 

3ij' (x) E??S II',; (X), &iP (X)7 G vij' (X), Uf_' (S) ?Z vi3 (X) (3.10) 

Here 01’ (x) is the vector of the initial velocities Vij? = V&,jO + Uj,i”f 

and vi j ” are the tensor and deviator of the initial strain rates, respectively. 
Then the relationships (2. l), (2.2). (2.5), (2.7) describing the kinematics of the 

homogeneous simple strain process take the respective form 

3jj (X, t) = A (t)v,j" ( X) (3.11) 

pij = pij (x), 3, (x, t) = A (t)Uli~ (s), u~,O = (‘/3~ijl’~i~)“r 

Eij (XT t) = A (t)Vij” (X) + E* ( X, t)6ij (3.12) 

pi (xv t) = A (t)Vi” (x) + Ui* ( X, t) 

Awning no initial shear strains (3ij (x, 0) E o), and taking account of the acti- 

vity of the process, we obtain the following properties of the function A (t) from 

(3.11) 

A (0) =f 0, A’(O) =r 1, A’(t) > 0 for tEz lo, rl (3.13) 

on the basis of Corollary (2.1)* we limit ourselves to the tensor-simple strain pro- 

cess (2.9). 

Eij (X9 t> - A (t)Vij”(x)7 pi (x, t) =I: A (t) vi0 (x) (3.14) 

Assuming no initial stresses and strains in the body, and the initial values of the 

external loads to be zero, we find the necessary and sufficient conditions for the pro- 

cess (3.13), (3.14). 
Let the solution of the problem (3.1) be the process (3.13) and (3.14). Then the 

initial velocities vi’, the strain rates uljo, and therefore, the directional tensor 

pi, also, of the process will be defined uniquely by the initial values of the external 
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load velocities Fi’” (x) E Fi’ (x, (I), Tvi’” ( S) f Tvi’ (X, O), $)i'O (X) G $*i 

(x, 0). Indeed, taking account of (3.4), (3.6), (3. ‘7), (3. ll), (3.13) and (3.14), 
we obtain from (3,1) 

(SK + G)v,~’ + G v ‘Vi’ + Fi’” = 0 in Q (3.15) 

2GViffol~ + 3Kv”li = Tci’” on So, vi 
O = q+‘o on 8, 

The problem (3.15) has the form of a mixed boundary value problem about the static 

equilibrium of a linearly elastic body with moduli K and G. 
The solution Vi0 (x)of this problem exists and is unique [5] and defines the quant- 

ities Vi j” (X), pi j (X)7 uniquely, i. e., the ‘lbeginning’f of the process (3.14). There- 

fore, the initial velocities of the external loads togethei with the functions A V) 
satisfying conditions (3.13) give the tensor simple strain process (3.14) completely, 
and the appropriate loading process in addition, i. e., the functions J’i (X7 t), I;i 

(& Or$i (xv 0. Using (3.15) we obtain the specific form of the loading process 

from (3.1),(3.11) and (3.14), namely 

Fi (X, t) = A (t)Fi“’ (x) - A (t) 10 (3,) $- J~O’ (3,)l X 
[Pi*’ (x) + ZKV,i” (X)J - 2G3q,,‘~’ (a,)pij,j (X) in Q 

(3.16) 

T,i (XI t) = A (t)Tyi” (X) - A (t)w (32L) [Tvi” (-~) - 

3Ku” (x)Zil on 23, 

9i (xv t> = A (Wi’” (x) on 2, 
The right sides of (3.16) are determined uniquely by the function A (t) and the 

initial external load velocities. 
Taking account of (3.15) and (3. ll), the relationships (3.16) are necessary, and 

by virtue of the uniqueness of the solution of problem (3. l), also sufficient conditions 

of the tensor simple strain process (3.13) and (3.14). 
Returning to the problem about the conditions for deviator simple active strain, 

i.e., turning from (3.14) to (3.12), we superpose an arbitrary quasithermal load field 

Ff*, Tvi*g $i* on the load field (3.16), according to Corollary 2.1. 

Theorem about homogeneous simple strain. Inorder 

for the homogeneous simple active strain process (3.11)-(3.13) to occur in a homog- 
eneous, isotropic, infinitesimally (initially) elastic compressible simply -connected 

body subjected to the external loads Fi, T~i, $i , it is necessary and sufficient that 

the following relations be satisfied: 

Fi (XT t) = Fir (X, t) $ Fi* (t) in Q (3.17) 

%I (X, t) = Ttvi (Xv r) + Tri* (Xv t) on ZO 

4i tx9 t, = *it tx9 t) + $i* (X9 t) on &J 

Here Fit, Tvtf, qt’ are defined by the relations (3.16) with (3.15) taken into 
account while Ft*, Tvi*, pi * is an arbitrary quasithermal load field (1.7). 

4, Investigatiorl of the homogeneous simple Strain 
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c o n d i t i o n s. A theorem about the homogeneous simple strain for incompressible 
bodies is formulated analogously with the relation cr - c: is replaced by the condition 

&ZO in Q (4.1) 
The strain tensor is the deviator EQ E r~ij, in this case, and the concepts of 

deviator-s~rnpi~ and tensor-simple strains agree, The qu~i~ermal load field assuring 
no (shear) strains is determined by the relationships 

Fi* = - U,i (X, t) in Q’ TYi* = [U (x, t) + D (t)l li on 2, (4.2) 
*+* = ai (x, t) on LG, 

Here U (x, t) andD @are arbitrary functions, ai (x, t) is an arbitrary vector of the 
displacement of the body as a rigid whole. The appropriate quasithermal solution has 
the form 

O.ij* = [U (X, t) +- D ft)] &j, Qj* E 0, ui* = ai (x, t) (4.3) 

The initial boundary value problem analogous to (3.15) has the form 

(Tti’O 4.. i5?2yi” i_ j7{‘0 zzzz fj in 52, Yi,i” = 0 in Q’ (4.4) 

o’“li + 2GXij”lj ~1 T,i” on S,, z’iO = *i‘“i on St* 

The loads of the form 

Fi (x, t) = A (t) Fi’* (x) - A (t) tw (4 -t- 3uw’ (+)I x (4*5> 

IFi’” (X) f U,i” (x)1 - %‘3,“0’ (~)p+j,j (x) in Q 

Tvi (x, t) = A (t) Tvi’” (x) - A (t) 0 (au) 1 Tvi’” (x) - 0” (x) pi] on Z, 

% (x7 t) I= A (t) $i’” (x) on -& 

are determined uniquely by the functions A (t) satisfying conditions (3.13) and by its 

initial velocities Fi” (x), Tyi’” (x), $4’” (x) with (4.4) taken into account, and assure 
the homogeneous simple strain process in the body, accompanied by a proportionate 

growth of the mean stress 

eij (x, t) = d(t) W” (x1, ui (x, 2) = A(t) vi0 (x), @ (x, t) = A (t)a’“(x) (4.6) 

An arbitrary homogeneous simple strain process is obtained by the linear superposition 

of the quasitiermal process (4. Z), (4.3) on the process (4.5), (4.6), from which the 
necessary andi sufficient conditions for homogeneous simple strain of incompr~ble 

bodies expressed by (3.17) indeed follow, where the functions (4.5) with (4.4) taken 

into account should be considered F+‘, Tvi*, @if while the functions (4.2) should be 

considered P**, T tCi* 3 *i* 

In the case of both compressible and incompressible bodies, the classes of loading 
processes governed by theorems about homogeneous simple strain are related to the 

material hardening characteristics, and generally differ subs~ntially from a proport- 

ionate change in the external loads. Additional arbitrariness in the change in the ex- 

ternal loads is introduced by superposition of quasithermal fields. Proportionate load- 

ing is not only a sufficient but aLso a necessary condition for the homogeneous simple 
strain of a body to the accuracy of ~isarbi~ar~~in particular cases Of a linearly ef- 

astic material or of a material defined in a simple loading theorem. 
The infhrence of the quasithermal fields on the behaviour of the external loads can 
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turn out to be substantial. For instance, we obtain the continuous, in time, develop- 

ment of the loads p:it, Z’,,i’, ‘$i’ from the zero initial values from the requirement 

for continuous growth of the shear strains from the zero values. At the same time, the 
quasithermal field’ Fi*, T,.i*, $i* is certainly not zero at the initial instant and is 

certainly not generally continuous in time during the process. 
Therefore, the results obtained are a foundation for the application of the theory 

of small elastic-plastic strains for a broader class of elastic-plastic bodies and loads 

then is provided for in the Il’iushin theorem on simple loading. 

The author is deeply grateful to Professor V. S. Len&ii for formulating the problem 

and supervising the research. 
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