UDC 539,3

NECESSARY AND SUFFICIENT CONDITIONS FOR
HOMOGENEOUS SIMPLE STRAIN
PMM, Vol, 42, No, 4, 1978, pp 701-710
G, L, BROVKO
(Moscow)
(Received August 13, 1976)

The practice of computations shows that the use of the theory of small elastic-
plastic strains yields completely satisfactory results for materials and loads of
a broader class than is specified by conditions of the theorem on simple loading
[1]. Necessary and sufficient conditions are obtained for homogeneous-simpie
strain for a broad class of compressible elastic-plastic solids with the depend-
ence between the stress and strain intensities limited only by conditions on the
ellipticity of the equilibrium boundary value problem. The form of the exter-
nal loads under simple strain can hence differ substantially from their proport~
ionate changes and, in general, depend on the mechanical characteristics of
the material, These results afford a foundation for application of the theory
of small elastic-plastic strains to a broader class of materials and loads,

1, Quasithermal fields, Lemma on linearsuperpot-
ition, Letusexamine a continuous medium whose mechanical properties under
isothermal conditions are govemed by the relationship between the stress and strain
deviators

sij = Qis (1) (1.1)
whose form is independent of the magnitude of the hydrostatic stress, and by the rela-
tionship for the global tensors

0=3K8 (1_2)

Here K is the volume elastic modulus, and the functional (OF ; Issuch that all
$;j = 0;; — 60;; = QO if and only if all 3;; = &;; — &8;; = 0.

A sufficiently broad class of solids possesses such mechanical properties.

Let the medium mentioned fill a simply-connected domain Q of the three~dimeh-
sional space bounded by a surface §. Let us examine the mixed boundary value pr-
oblem of quasistatics when a loading process by the volume forces F; (x, t), defined
in the domain Q@ = Q x [0, 71, the surface forces T,; (X, ), defined on the
partZ,= S, X[0,T]of the side boundary ¥ = § X [0, T] of the domain (), and
the displacements ; (x, f)on the part|3 =S, X [0, T] of the boundary ¥ (S,
+ 8, = 8, 2, + Z, = I)is given for the body Q in the time segment ¢ = [0, T,
The problem is to find displacement u; (x, ¢), straing;; (x, #), and stress 0;; (x, )
functions which will satisfy the relationships (1. 1) and (1. 2) in the domain Q =0
+ Z, the equilibrium equations (here and below the summation is over repeated Latin
and not the Greek subscripts)

Gij,j + Fi =0 in Q (1.3)
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the Cauchy relations
& =", (u;, ; +u; ;) in Q (1.4)
and also the boundary conditions
0;5lj=Ty; on 3, (1.5)
up =1P; on Iy (1.6)

where [; = [; (x) are the direction cosines of the extemal normal to §.

Let us assume the problem (1, 1)~(1. 6) to be solvable in a unique way.

we find theclass of loading processes for which the strain and stress tensors are
global at all points of the body at any time of the process.

Lemma I.I. Inorder for the solution of the boundary value problem (1, 1)
-(1. 6) to represent an arbitrary pure volume strain process for the body, it is necess-
ary and sufficient that the external loads have the form

= F () i @ (L7
P* (x, 1) = BK) Yy Fi* () (z525) — 2 [Fi () 25 +
D ®I}+a; on Z,
Here F;* (t), D (t) are arbitrary functions on [0, T, a; = a; (x, t) is an arb-
itrary displacement vector for the body as a rigid whole.
We prove the necessity of these conditions. Let &;; (X, %) = & (x, t) §;;. Then
from the strain compatibility equations

-+ £,

£ 3, aw = 28ap, ap (1.8)

ac, BB
Coa, py = (~ Epv, o T Eya, T Bas, v), 0

(&, B, v=1,2,3, a =P %= v+ a)
there follows €,a5 = O (a, § = 1,2,3),i.¢.,

g (%, 8) = [Cr () 2x + Co )] 8;; 1 @ (1.9

where Cx (©) and C, (f) are arbitrary functions on [0, T].
It follows from the properties of the functional (1.1) that the stress tensor is also
global Oy (X, £) = 0 ( X, £)8;;, where according to (1.2) and (1.9) o (x, ) = 3K

[Cx (Dzx + Co (] 1.2y
;5 (x, 1) = 3K [Cx (t)zx + C, (DI6;; 10 O (1. 10)

In this case the general solution of the Cauchy equations (1.4) is
Uu; (X, t) = —1/2Ci (t) (x,x,) + xX; [C] (t)x, + CO (t)] -+ bi in Q' (1' 11)

Here b; = b; ( x, t) is an arbitrary displacement vector of the body as a rigid
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whole,
In order for the functions (1, 9)-(1.11) to satisfy the equilibrium equations (1, 3) and
the boundary conditions (1.4), it is necessary that

Fi = ——3KC; (t) in Q' (1.12)
Ty; = 3K IC; ()x; + Co )1I; on Zo
P = —,C; () (zsz;) + 2, [C; Oz + Co )T+ by O° 3y

from which we establish the necessity of the conditions (1,7) by setting F;* (1) =
—3KC; (), D (1) = —3KC, (t) and a; (x,t) = b, (x, t).
To prove the sufficiency of the conditions, it should just be noted that the functions

u* (x, ) = @GK) {oF:* (t) (zyx;) — z, [F;* (Oz; + D@1} + a; (1.13)
g% (x, 1) = —@K) [Fy* (t)ay + D (8)I5,;
Gij* (X, t) = ——[Fk* (t)xk + D (t)IGU

in Q' are the solution of the problem (1. 1)-(1. 6) under the loads (1, 7), which is uni~
que by assumption,

Therefore, the process of pure volume inhomogeneous strain, described for a body
from materials with the properties (1. 1) and (1. 2), is characterized by four independent
scalar functions C; (f) (i = 0, 1,2, 3) and corresponds to an arbitrary change in time
of the homogeneous field of volume forces F(f) for inhomogeneous loads on the sur-
face defined according to (1.12). The integral equilibrium conditions expressed by the
functions (1, 12) for the body are satisfied identically and impose no limitations (const-
raints) on the functions C; (2).

Lemma 1,1 allows the following interpretation: if a homogeneous body with the
mechanical properties (1. 1) and (1. 2) floats in equilibrium in a homogeneous gravity
fluid in a homogeneous field of mass forces, then it experiences just volume strains and
stresses,

Let us call the field of extemnal loads F;*, T.;*, ¢;* defined by (1.7) quasith-
ermal in application to the problems of the type (1, 1)-(1.6), and the solution (1, 13),
corresponding to this field, the quasithermal solution,

Lemma I.2 about linear superposition, Forgiven F;, Ty,
Y; let the boundary value problem (1, 1)-(1. 6) have the solution u,, €5, 0;;.. Then
upon the imposition of an arbitrary quasithermal field of loads (1. 7) the solution is ob-
tained by a linear superposition of the corresponding quasithermal solution (1, 13), i.e.,
for the loads F; + Fi*, Tv; + I'v;*, ¥ + ¥ the solution of the problem (1. 1)-
(L.6)is u; + u;*, g;; -+ &%, 05 T 0%

The proof follows from Lemma 1.1 the linearity of the relationships (1. 2)-(1. 6),
and the independence of the nonlinear relationships (1, 1) from the volume strains and
stresses,

_ Ttisseen that the set of quasithermal process {F;*, Ty;*, ¢;*, u;*, €;;*, 0;;*}
Is a linear space, and the whole set of processes {F,, Tyiy s, u;, &4, 0;;) which are

subjgct to the relationships (1. 1)-(1. 6), is factorized by Lemma 1.2 in the subspace of
quasithermal processes. Here the process should be understood to be the
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vector function {F;, Ty;, P;, U;, €;5, O35} definedin @ X Zg X T, X Q" X Q'
X Q' and comprised of components of the external load field and the solution cor-
responding to this field,

Finally, let us note that the sum of any tensor satisfying the strain compatibility
equations (1, 8) and the arbitrary quasithermal strain tensor (1. 9) also satisfied (1. 8).

2. Homogeneous~-simplestrain, Kinematics and
representation of the process, The process of body strain is called
simple [1] (simple according to the deviator) if the field of the directional strain tensor
remains invariant during the whole process, i,e.,

9 (X, 1) = As;;° (x) in Q' (2. 1)

Here 3;;° (X) is some deviator givenin Q', and A = A4 (x, ?) is a certain function
of the coordinate and time. The relationship (2, 1) can be written in the form

Pij = Dij (X), I ('X, t) = A3uo (X) (2' 2)

Here p;; is the time-invariant directional strain tensor 9, = (%/39;;9;5)"2 is the
strain intensity of the process, and 2, is the intensity of the deviator a;;".

we call the body strain process homogeneously simple if A = A (f). only such
simple strain processes are considered below,

The value of the deviator of the process at any fixed time not identically zero, or
any value proportional to this can be taken as the generating deviator 3;;° (z) of the
simple strain process in (2, 1), Every other method of selecting the generating deviator
reduces to this, In particular, the proposition; For any linear operator [ in a time
independent of x, and any %, and ¢, from [0, T'1 (A4 (t;) = O) there is a number
C=C(L,t,t) such that

L o35 (%, )limpy = Cayj (x, 2) (2.9

is valid for an arbitrary homogeneous strain process,
Here and henceforth, the time should be understood to be any parameter distingu-
ishing a sequence of events, i.e, any increasing scalar function of the physical time
A (2).
Indeed, we obtain from (2, 1)
L a5 (x, Di=po = L[4 (135" (®)]1=t, = L[4 (t)];—y, X
9 () = L[4 (O]i=tA™* (t)235 (x, 1)) =
Cos; (%, t)y € = LA (]i=reA™" ()
Therefore, if C % 0 in the relationship (2, 3) then
2,4
9 (x) = L la;; (%, D)i—to (=4

can be taken as the generating deviator of the process (2.1).

It is easy to see that for each separate process (2. 1) with a change in the selection
of 9;;° ( X) the function A () varies proportionately to itself.

Let us consider the kinematics of the homogeneous simple strain processes of com-
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pressible media filling an arbitrary simply-connected domain in three-dimensional
space, Taking account of (2.1), we represent the strain tensor &;; = 9;; 4+ €0;;
in the form

&5 (%, 8) = A (t)e;;° (x) + e* (z, £)6y, (2.9

Here &;;° (X) = 3;;° (x) -+ &°(x)0;; is a tensor whose deviator part agrees with the
generating deviator 2;;” (X) of the process, i.e., &;; is defined in conformity with
(2.4) to the accuracy of an arbitrary global tensor by the relationship

eijo (x) =L [Sii (x, )=t (2.6)

The quantity &* (X, £) = & (x, t) — A (t)e° (x) describes the deviation of the
mean strain of the process & from the proportionately varying Ae’.

we shall henceforth assume that the strain tensor e;; (x, #) satisfies the compati-
bility equations (1. 8) during the whole process, Then by virtue of the linearity of the
operator L in (2.6) and the linearity of equations (1.8), the tensor &;;° (X)also sat-
isfies (1.8). Taking this into account, we obtain &¥%s = 0 in Q' (a, p =1, 2, 3)
from (2. 5) and (1, 8), from which we conclude analogously to (1. 9) that the tensor

e* (x, t)8;; defines a process of purely volume (quasithermal) strain of a body and

together with the displacement vector corresponding to this process u;* ( X, t) 4is
expressed by (1.9) and (1, 11), respectively, If the combined tensor  €;;° (X) s
selected in general form corresponding to (2.4), i.e., in the form of the sum of (2. 6)
and the arbitrary combined global tensor of the form (1. 9), we arrive at the same
result,

Therefore, the global strain tensor for homogeneous-simple strain varies proport-
ionally to the deviator (the function A (£))to the accuracy of the quasithermal strain
tensor

e (x, )8;; = A (D& ()85 + &* (x, )85

The expression corresponding to (2. 5) for the displacement vector of the homogen-
eous simple strain process has the form

u; (x, 1) = 4 (u’ (x) + u* (x, 1) 2.7

Here the vector u;° (x) is the solution of the Cauchy equation &;;° = Y, (u;;” +
u;,;°)  and is defined in case of (2, 6) to the accuracy of an arbitrary displacement
of the body as a rigid whole by the relationship

u® (x) = L [uy; (x, )=, (2.8

All arbitrary rigid body displacements occurring in the resolution of the Cauchy
equatiions are included in the expression for u;* (X, ). The first members in the
right sides of (2, 5) and (2, 7) evidently govern the tensor-simple strain process,

Lemma 2.]. Kinematically the homogeneous-simple (deviator simple) strain
process of simply-connected compressible bodies is a linear superposition of two ind-
ependent processes; 1) the tensor-simple strain process, and the pure volume (quasith-
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ermal) strain process for a body.

In conformity with this, the set of kinematic representations (2. 5) and (2. 7) of
all deviator-simple strain processes is factorized in the linear subspace of kinematic
representations (1, 9) and (1. 11) of arbitrary quasithermal strain processes,

This result can be extended to the state of stress of a body, as well as to the load-
ing process during deviator simple strain, in applications to problems of the type (1. 1)-
(1. 6) on the basis of Lemma 1..2,

Corollary 2.1. Every deviator-simple strain process can be represented in
the form of the sum
{Fi'l T’\'i'l wi’ Uiy Eijy Uij} = {Fil + Fz'*q T\'i[ + 7'\-1'*, 'lpit ‘+‘
i*s wt Eou et + e, 04 0y%)

Here the superscript ! denotes functions describing the tensor-simple strain process,
and the superscript * the quasithermal process, Therefore, the diviator-simple, and
tensor-simple strain processes having identical strain deviators, drop into one equival-
ence class during factorization of a set of processes of the type (1. 1)-(1. 6) in the
subspace of quasithermal processes. Hence, the question of the homogeneous simple
strain conditions reduces to the determination of the tensor-simple strain conditions
described by the relations

e (%, 1) = 4 (Dei;” (%), u; (x, 1) = A (Hu” (x) (2.9)
obtained from (2.5) and (2, 7) by discarding the quasithermal terms,

8 Initially and infinitesimally - elastic materials,
Theorem of homogeneous simple strain, Letustumtoan
investigation of the homogeneous simple strain conditions in solids. Limiting our-
selves to the subclass of tensor-linear plasticity theories described by (1. 1) and (1. 2),
and taking account of the agreement between tensor-linear theories and theories of
small elastic-plastic strains if the strain is simple [1], let us seek the formulation of
these conditions in the terminology of the theory of small elastic-plastic strains,

The quasistatics boundary value problem of the theory of small elastic-plastic
strains under active strain is described analogously to problem (1, 1)-(1. 6) by the re-
lationships [1, 2]

0 +F; =0 in Q G.h
$;5 = (204/39,)3;5, 0u = 3Ga, [1 — w (9,)],

o = 3Ke, &; = Yyui; + uj,1) in Q'

Uijlj = T\'i on 25

u; =%; on Zq

Here fhe notation has the same meaning as in the problem (1.1)-(1.6); G is the
initial shear modulus of the material, which is assumed positive, i.e.,
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36 = lim —% >0 (3.2)

3u—’0 u

The function ® (3,) characterizes the plastic shear properties of the material
(1 J. For the majority of known materials, the function ® (5u) satisfies the inequalities
O<\m(9u)<m(9u)+3u o’ (9u)<7»<1 (3.3)
which assures the existence and uniqueness of the solution of the problem (3. 1) [3, 4].
Moreover, we obtain ]im o (2,) = O from (3.2), and by predetermining w (3,) at
9u~0
zero in continuity, we have

o0 =0 (3.4)

If there is a finite section Q < 3, <C 9, of the linearly elastic dependence 0, = 3G3,
in the material, we have

() =0 for 0<% (3.9)

We call such materials initially elastic,
In the opposite case, taking account of (3,4) we obtain the asymptotic character-
istic
lims,0' (3,) = 0 (3.6)

IU—>)

from the requirement of continuity of the first derivative at zero

. ds, . , ds, , S,
hmFEllm 3G[1—m——3u(o]=d = lim — = 3G
.9“—*0 u 3,“—’0 au 9u=0 Bu—oo '91_,,

Taking account of (3, 6), we obtain

lim 2,2%0" (3,) = 0 (3.7
3,-0
u
from the asymptotic characteristic of the second derivative of the function oy (9,)

in the neighborhood of zero,

. dzsu 1
lim —% o, =lim 3G [— 23,0" — 3,%0"] = 0
9

p da
du—> 0 a w0

etc, As is seen, the asymptotic of the behaviour of the function o, (%)  in the
neighborhood of zero defines the asymptotic of the behaviour of the function ® (3y).
in the general case, if

(3.8)

lim —% 50" =0 for £=2,3,...,n
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then
lim 5,"a® (
9,0

)=0 for £=2,3,....n (3.9)

Materials for which the relationships (3, 2), (3.4), (3.6)~(3.9) are satisfied will
be called infinitesimally elastic of order n.
1t is easy to see that any initially elastic material is infinitesimally elastic of order
In this case, we will assume compliance with conditions (3, 2)~(3,4), (3. 6),
» 1), and for brevity will call such material infinitesimally elastic,
Let us pose the problem of seeking the process for the change in the form of the
external loads for which the process of active homogeneous simple strain wiil occur
in a body,
Let us note that the differentiation operation of any order with respect to time [3, 4]
can be taken as L in (2,4) for the generating deviator 2;;” (X) of the process,
Selecting L = d/dt, t, = 0, we obtain from (2.4), (2. 6), (2.8)

-~

¢

Lo

4
\

a1y () = v (%), & (), = v (%), ut () =vp(x) 10
Here Ui (X) is the vector of the initial velocities vy = Yolvs, + v3.")
and V; j'o are the tensor and deviator of the initial strain rates, respectively,
Then the relationships (2. 1), (2. 2), (2.5), (2.7) describing the kinematics of the
homogeneous simple strain process take the respective form

25 (X, 1) = 4 (" (x) (3.11)
Pij = pij (X), 2, (x, ) =4 (v, x), v,° = */5 Uijml’s;'o)"i
g;5 (X, 8) = A (Bv;;” (x) + &* (x, 1);; (3.12)

u (x, t) = A (" (x) + w;* (x, 1)

Assuming no initial shear strains (9;; (%, 0) = 0), and taking account of the acti-
vity of the process, we obtain the following properties of the function A (f) from
(3.11)

40 =040 =1 40>0 for t=1[0,7] (3.13)

On the basis of Corollary (2, 1), we limit ourselves to the tensor-simple strain pro-
cess (2, 9),

g (x,0) = 4 v’ (%), w; (x, 1) = A () v (x) (3.14)

Assuming no initial stresses and strains in the body, and the initial values of the
external loads to be zero, we find the necessary and sufficient conditions for the pro-
cess (3, 13), (3. 14).

Let the solution of the problem (3. 1) be the process (3. 13) and (3. 14). Then the
initial velocities v;°, the strain rates v;;°, and therefore, the directional tensor
Py also, of the process will be defined uniquely by the initial values of the external



Conditions for hornogeneous simple strain 135

load velocities F;° (x) = F; (x, 0), Tv,° (x) = Ty’ (x, 0), ¥° (x) =1,
(x, 0). Indeed, taking account of (3.4), (3.6), (3.7), (3.11), (3.13) and (3, 14),
we obtain from (3, 1)

BK+ G, +6GV W+ F,°=0in Q (3. 15)
ZGUUIOZ[ -+ 3Kv°l,- = Tvi.o on Sq, vio = IIJ,"O on S“

The problem (3. 15) has the form of a mixed boundary value problem about the static
equilibrium of a linearly elastic body with moduli K and G.

The solution v;° (x)of this problem exists and is unique [5] and defines the quant-
ities v;;° (x), p;; (X),uniquely, i,e., the "beginning” of the process (3. 14), There-
fore, the initial velocities of the extemnal loads together with the functions A (@)
satisfying conditions (3, 13) give the tensor simple strain process (3. 14) completely,
and the appropriate loading process in addition, i.e., the functions F; (x,?), Ty,
(x, 1),; (x, ). Using(3.15) we obtain the specific form of the loading process

from (3. 1),(3. 11) and (3. 14), namely

Fi (X, t) = A (t)Fi.o (.Z) — A4 (t) [0) (3u) + '7u(1)’ (3u)] X
[F;° (x) + 3Kv,” ()] — 2Ga.20 (2u)pij.5 (X) in Q

Ty (x, 1) = A (7T (x) — 4 Qo (0.) [T, (x) —
3K1° (x)I;] on X3,

P (x,8) = A (O (X) on Zu

The right sides of (3. 16) are determined uniquely by the function 4 (#) and the
initial external load velocities.

Taking account of (3, 15) and (3. 11), the relationships (3. 16) are necessary, and
by virtue of the uniqueness of the solution of problem (3. 1), also sufficient conditions
of the tensor simple strain process (3, 13) and (3, 14).

Returning to the problem about the conditions for deviator simple active strain,
i.e., turning from (3, 14) to (3. 12), we superpose an arbitrary quasithermal load fieid
F*, T;*, d;* on the load field (3. 16), according to Corollary 2, 1,

(3.16)

Theorem about homogeneous simple strain, Inorder
for the homogeneous simple active strain process (3. 11)-(3. 13) to occur in a homog-
eneous, isotropic, infinitesimally (initially) elastic compressible simply -connected
body subjected to the external loads F;, Ty;, §; , it is necessary and sufficient that
the following relations be satisfied:

Fi(x, 1) = Fi' (x, ) + F/* (1) nQ (317
-T'Vi (X, t) = Ttvi (X, t) + T'Vi* (xi t) on 20
\pi (X’ t) = 1pit (X1 t) + lpi* (X, t) on Zu

Here Fi', Ty, 1|J,‘ are defined by the relations (3, 16) with (3, 15) taken into
account while F;*, T,;*, ;*is an arbitrary quasithermal load field (1.7).

4, Investigation of the homogeneous simple strain
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conditions, A theorem about the homogeneous simple strain for incompressible
bodies is forrmulated analogously with the relation ¢ ~ & is replaced by the condition

e=0 in Q (4. 1)
The strain tensor is the deviator &i; = 9;. in this case, and the concepts of
deviator-simple and tensor-simple strains agree, The quasithermal load field assuring
no (shear) strains is determined by the relationships

Fe= —~Uix, 1) in Q I*={UEn+D@®IL on Z5 (4,2
Pi* = a; (X, ) on Xy,
Here U (x, t)andD (t)are arbitrary functions, @i (X, ¢} isan arbitrary vector of the
displacement of the body as a rigid whole, The appropriate quasithermal solution has
the form

g = U (X, 8+ D 0185, 857 =0, wi* = a5 (x, 1) (4.3)
The initial boundary value problem analogous to (3, 15) has the form

G,i.o '*“ szvio + F‘?‘,‘o =0 in Q; Ui,io = 0 in Sz' (4. 4)
0% - 26yt = T, on  Sg v =P onSy

The loads of the form

Fi(%, )= A4 () Fi° (8) — 4 () [0 (o) + 90’ (3] X (4.5)
[Fi™ (x) + 0,:° (%)] — 262,20 (3,) pis,i (x) in Q

Ty (X%, ) = A (1) 7,,;° (x) — A (Do (o) [7,;° (x) — 6 (x) ] on I,

Yi (X, 8) = A (O (x) on Zy
are determined uniquely by the functions 4 (¢) satisfying conditions (3, 13) and by its
initial velocities Fi™ (x), T;™ (X), ;™ (x) with (4, 4) taken into account, and assure
the homogeneous simple strain process in the body, accompanied by a proportionate
growth of the mean stress

eij (X, ) = A vii® (%), wm (X ) = A v (X), o(x, 8 =4 (Ho'%x) (4.86)

An arbitrary homogeneous simple strain process is obtained by the linear superposition
of the quasithermal process (4. 2), (4. 3) on the process (4, 5), (4.6), from which the
necessary and: sufficient conditions for homogeneous simple strain of incompressible
bodies expressed by (3.17) indeed follow, where the functions (4, 5) with (4, 4) taken
into account should be considered 73!, 7', ¥;!  while the functions (4. 2) should be
considered  Fs*, Ty, $i*

In the case of both compressible and incompressible bodies, the classes of loading
processes govermned by theorems about homogeneous simple strain  are related to the
material hardening characteristics, and generally differ substantially from a proport-
ionate change in the extemal loads, Additional arbitrariness in the change in the ex-
temal loads is introduced by superposition of quasithermal fields. Proportionate load-
ing is not only a sufficient but also a necessary condition for the homogeneous simple
strain of a body to the accuracy of thisarbitrarinessin particular cases of a linearly el~
astic material or of a material defined in a simple loading theorem.

The influence of the quasithermal fields on the behaviour of the external loads can
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tumn out to be substantial, For instance, we obtain the continuous, in time, develop-
ment of the loads ¥;!, T.,;',¥i' from the zero initial values from the requirement
for continuous growth of the shear strains from the zero values. At the same time, the
quasithermal field' Fi*, Ty;*  ¥i* is certainly not zero at the initial instant and is
certainly not generally continuous in time during the process.

Therefore, the results obtained are a foundation for the application of the theory
of small elastic-plastic strains for a broader class of elastic-plastic bodies and loads
then is provided for in the Il'iushin theorem on simple loading,

The author is deeply grateful to Professor V, S, Lenskii for formulating the problem
and supervising the research,
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